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A Cholesky matrix transforms a vector of uncorrelated (i.e. independent) normally-distributed random variates
into a vector of correlated (i.e. dependent) normally-distributed random variates. These now correlated random
variates can be used in a Monte Carlo simulation where correlated random variates are required. In Part I we will
develop the mathematics of the Cholesky Decomposition. To develop the mathematics we will use the following
hypothetical problem...

The Problem: Imagine that we are tasked with creating a Monte Carlo simulation of a stochastic cash flow
stream where cash flow (Ct) for any year t is defined as...

Ct = Rt−1 (1 + θ1) (1− θ2 − θ3) (1)

In the cash flow equation above Rt−1 is revenue for the prior year, θ1 is a random variate that represents the revenue
growth rate, θ2 is a random variate that represents the ratio of operating expenses to revenue, and θ3 is a random
variate that represents the ratio of capital expeditures to revenue. The probability distributions associated with
each random variate and the three independent random variates pulled from those distributions are..

Table 1 - Probability Distributions and Three Independent Random Variates

Symbol Description Distribution Mean Standard Deviation Random Variate
θ1 Revenue growth rate Normal 0.04 0.05 (0.0370)
θ2 Expenses to revenue Normal 0.60 0.15 0.6685
θ3 Cap ex to revenue Normal 0.20 0.07 0.2956

Example: Given that revenue for the prior year was $1,000,000 simulated cash flow for the current year using cash
flow Equation (1) and the three random variates from Table 1 is...

Ct = $1, 000, 000 (1 + (0.0370)) (1− 0.6685− 0.2956) = $34, 538 (2)

The correlation matrix below represents the correlations of cash flow Equation (1) random variates...

Table 2 - Correlation Matrix

θ1 θ2 θ3
θ1 1.00 0.35 0.55
θ2 0.35 1.00 0.25
θ3 0.55 0.25 1.00

Question: The three random variates in Table 1 are independent and therefore the Monte Carlo simulated cash
flow (via Equation (2)) does not reflect the correlation matrix as defined in Table 2 above. If correlation was taken
into account what would the revised result of Equation (2) be? Why is the answer different?

A Vector Of Independent Random Variates

We will define vector ~x to be a vector in R3 that consists of three independent, standardized, normally-distributed
random variates. This vector in vector notation is....

~x =

x1x2
x3

 (3)
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Each random variate in vector ~x is normally-distributed with mean zero and variance one. The probability distri-
butions for each random variate in equation form are...

x1 ∼ N [0, 1] ...and... x2 ∼ N [0, 1] ...and... x3 ∼ N [0, 1] (4)

The expected values of each xi in vector ~x where i ∈ [1, 2, 3] are...

E[x1] = 0 ...and... E[x2] = 0 ...and... E[x3] = 0 (5)

The expected values of the square of each xi in vector ~x where i ∈ [1, 2, 3] are...

E[x21] = 1 ...and... E[x22] = 1 ...and... E[x23] = 1 (6)

Given that the random variates are independent the expected values of the product of each xi xj pair in vector ~x
where i ∈ [1, 2, 3], j ∈ [1, 2, 3] and i 6= j are...

E[x1x2] = 0 ...and... E[x1x3] = 0 ...and... E[x2x3] = 0 (7)

Adding Dependence Via A Linear Transformation

We have the linear transformation T : R3 → R3 such that T (~x) = A~x. The matrix A is the transformation matrix
for T with respect to the standard basis and is in the following form...

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (8)

As noted above vector ~x consists of independent, normally-distributed random variates each with mean zero
and variance one. We want to apply a linear transformation to vector ~x such that the matrix:vector product of
this transformation is vector ~y, which is a vector in R3 that consists of dependent, normally-distributed random
variates with mean zero and variance one. Using Equations (3) and (8) this linear transformation in equation form
is...

A~x = ~ya11 a12 a13
a21 a22 a23
a31 a32 a33

x1x2
x3

 =

y1y2
y3

 (9)

If we multiply out the linear transformation as defined by Equation (9) above the equations for each dependent
random variate yi as a function of the independent random variates xi are...

y1 = a11x1 + a12x2 + a13x3 (10)

y2 = a21x1 + a22x2 + a23x3 (11)

y3 = a31x1 + a32x2 + a33x3 (12)

We will define matrix C to be the covariance matrix applicable to the vector of dependent random variates ~y as
defined by Equation (9) above. Using Appendix Equations (49) through (54) our covariance matrix C in matrix
notation is...

C =

 a211 + a212 + a213 a11a21 + a12a22 + a13a23 a11a31 + a12a32 + a13a33
a11a21 + a12a22 + a13a23 a221 + a222 + a223 a21a31 + a22a32 + a23a33
a11a31 + a12a32 + a13a33 a21a31 + a22a32 + a23a33 a231 + a232 + a233

 (13)

Note that the product of our linear transformation matrix A (as defined by Equation (8) above) and it’s transpose
also gives us covariance matrix C. In equation form this relationship is...

AAT =

a11 a12 a13
a21 a22 a23
a31 a32 a33

a11 a21 a31
a12 a22 a32
a13 a23 a33

 = C (14)

Important: When vector ~x as defined by Equation (3) above consists of independent, standardized, normally-
distributed random variates then per Equations (13) and (14)...

C = AAT (15)
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The Plan

Cash flow Equation (2) resulted in simulated cash flow of $34,538. We will define the vector ~z to be the vector of
parameters used in that equation (note that the parameters were given to us in Table 1). The definition of vector
~z is therefore...

~z =

θ1θ2
θ3

 =

(0.0370)
0.6685
0.2956

 (16)

The random variates in vector ~z are independent, non-standardized, normally-distributed random variates. Using
these parameters in cash flow Equation (2) gives us an incorrect result because the correlation matrix as defined
in Table 2 is ignored. To answer our problem we must add dependence to vector ~z consistent with our correlation
matrix as defined in Table 2 and then recalculate cash flow Equation (2) such that we get the correct result.

To solve our problem we will...

Step Course of Action
1 Standardize the random variates in vector ~z. Note that standardization does not alter the

correlation matrix as given to us in Table 2.
2 Noting that when using standardized random variates the covariance matrix equals the correlation

matrix we set matrix C equal to the correlation matrix as defined in Table 2.
3 Find transformation matrix A by decomposing matrix C into matrix A and it’s transpose via

a Cholesky Decomposition.
4 Calculate the matrix:vector product of our now defined matrix A and our vector of independent,

standardized random variates such that we get a vector of dependent, standardized random variates.
5 Convert these dependent, standardized, normally-distributed random variates with mean zero and

variance one to the probability distributions of θ1, θ2 and θ3 (i.e. un-standardize).
6 Redefine vector ~z and recalculate Equation (2) to solve our problem.

Step 1 - Standardize The Random Variates

We will define x1 to be the standardized random variate for θ1 as defined by vector ~z above. The standardized
random variate x1 is...

x1 =
−0.0370− 0.04

0.05
= −1.5404 (17)

We will define x2 to be the standardized random variate for θ2 as defined by vector ~z above. The standardized
random variate x2 is...

x2 =
0.6685− 0.60

0.15
= 0.4566 (18)

We will define x3 to be the standardized random variate for θ3 as defined by vector ~z above. The standardized
random variate x3 is...

x3 =
0.2956− 0.20

0.07
= 1.3664 (19)

Our vector of standardized random variates is...

~x =

x1x2
x3

 =

(1.5404)
0.4566
1.3664

 (20)

Note: When you standardize a normally-distributed random variate you subtract the mean and divide by the
standard deviation. That process gives you a random variate with mean zero and variance one.

Step 2 - Define The Covariance Matrix C

As noted above standardization does change the correlation matrix as defined by Table 2 above. When random
variates are standardized the covariance matrix equals the correlation matrix. Using Table 2 above we can therefore
define our covariance matrix C as...

C =

1.00 0.35 0.55
0.35 1.00 0.25
0.55 0.25 1.00

 (21)
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Step 3 - The Cholesky Decomposition

We will define matrix A by decomposing matrix C, which is now the correlation matrix as defined in Table 2 above,
into matrix A and it’s transpose. We will not only decompose matrix C into a lower and upper triangular matrix
via a LU Decomposition but we will also construct the decomposition such that matrix U equals the transpose
of matrix L. In general the equation for this process is...

C = LU

C = L̃L̃T

AAT = L̃L̃T

A = L̃ (22)

We will now work through the decomposition. Per Equation (15) above...

AAT = C

=

1.00 0.35 0.55
0.35 1.00 0.25
0.55 0.25 1.00

 (23)

To define matrix A we will perform an LU decomposition of matrix C. We will first find the upper triangular
matrix U. If...

E1 =

 1 0 0
0 1 0

(0.55) 0 1

 ...and... E2 =

 1 0 0
(0.35) 1 0

0 0 1

 ...and... E3 =

1 0 0
0 1 0
0 (0.0655) 1

 (24)

Then our upper triangular matrix U is...

U = E3E2E1C =

1 0.3500 0.5500
0 0.8775 0.0575
0 0 0.6937

 (25)

We will then find the lower triangular matrix L. Given that...

E−1
1 =

 1 0 0
0 1 0

0.55 0 1

 ...and... E−2
2 =

 1 0 0
0.35 1 0

0 0 1

 ...and... E−3
3 =

1 0 0
0 1 0
0 0.0665 1

 (26)

Then our lower triangular matrix L is...

L = E−1
1 E−1

2 E−1
3 =

 1 0 0
0.3500 1 0
0.5500 0.0665 1

 (27)

If we redefine the upper triangular matrix U as...

U = DLT (28)

Then...

D = U

[
LT

]−1

=

1 0.3500 0.5500
0 0.8775 0.0575
0 0 0.6937

1 (0.3500) (0.5271)
0 1 (0.0655)
0 0 1

 =

1 0 0
0 0.8775 0
0 0 0.6937

 (29)

The square root of matrix D is...

D0.5 =

1 0 0
0 0.9367 0
0 0 0.8329

 ...where...

[
D0.5

]T
=

1 0 0
0 0.9367 0
0 0 0.8329

 = D0.5 (30)
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Putting it all together...

C = LU

= LDLT

= LD0.5D0.5LT

= LD0.5[D0.5]TLT

= LD0.5[LD0.5]T (31)

So matrix A (also known as the Cholesky matrix) is...

A = LD0.5 =

 1 0 0
0.3500 1 0
0.5500 0.0665 1

1 0 0
0 0.9367 0
0 0 0.8329

 =

 1 0 0
0.3500 0.9367 0
0.5500 0.0614 0.8329

 (32)

We have found our linear transformation matrix A!

Step 4 - Calculate Our Vector Of Dependent, Standardized Random Variates

We will define vector ~y to be a vector of dependent, standardized, normally-distributed random variates. Given
our linear transformation matrix A as defined by Equation (32) above, and vector ~x as defined by Equation (20)
above, our vector of dependent, standardized, normally-distributed random variates is...

A~x = ~y 1 0 0
0.3500 0.9367 0
0.5500 0.0614 0.8329

(1.5404)
0.4566
1.3664

 =

(1.5404)
(0.1114)
0.3189

 (33)

Step 5 - Recalculate The Parameters To Our Problem

Vector ~y as defined by Equation (33) above consists of dependent, standardized, normally-distributed random
variates. The parameters to our problem θ1, θ2 and θ3 are not standardized (i.e. have means and/or variances
different from zero and one, respectively). Per Equation (33) above vector ~y is defined as...

y1 = −1.5404 ...and... y2 = −0.1114 ...and... y2 = 0.3189 (34)

Our new value of parameter θ1, which is y1 un-standardized, is...

θ1 = 0.04 + (−1.5404)(0.05) = −0.0370 (35)

Our new value of parameter θ2, which is y2 un-standardized, is...

θ2 = 0.60 + (−0.1114)(0.15) = 0.5833 (36)

Our new value of parameter θ3, which is y3 un-standardized, is...

θ3 = 0.20 + (0.3189)(0.07) = 0.2223 (37)

Note: To un-standardize you reverse the process of standardization. The un-standardized random variate is the
mean plus the standard deviation times the standardized random variate.

Step 6 - The Answer To Our Problem

Using our new parameters θ1, as defined by Equation (35) above, θ2, as defined by Equation (36) above, and θ3, as
defined by Equation (37) above, our re-defined vector ~z is...

~z =

θ1θ2
θ3

 =

(0.0370)
0.5833
0.2223

 (38)
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Plugging these new parameters into Equation (2) our revised simulated cash flow is...

Ct = $1, 000, 000 (1 + (0.0370)) (1− 0.5833− 0.2223) = $187, 197 (39)

Why are the answers different? Using independent random variates simulated cash flow was $34,538. Using de-
pendent random variates simulated cash flow was $187,197. Note that per Table 1 the revenue growth rate θ1 was
expected to be 0.0400 but was instead -0.0370 for this simulation. Per Table 2 above both θ2, which is the ratio
of operating expenses to revenue, and θ3, which is the ratio of capital expenditures to revenue, are correlated with
revenue growth. Given the correlation matrix as revenue growth was negative both operating expenses and capital
expenditures as a percent of revenue decreased.

THE POINT: Correlation is important and not modeling it gives us wrong answers!

Appendix

A) Using Equation (5) above the expected value of y1 as defined by Equation (10) is...

E[y1] = E[a11 x1 + a12 x2 + a13 x3]

= a11 E[x1] + a12 E[x2] + a13 E[x3]

= 0 (40)

Using the mathematics for the expected value of y1 it can be shown that the expected values of y2 and y3 as defined
by Equations (11) and (12), respectively, are...

E[y2] = 0 (41)

E[y3] = 0 (42)

B) Using Equations (5) and (6) above the expected value of the square of y1 as defined by Equation (10) is...

E[y21 ] = E[(a11x1 + a12x2 + a13x3)2]

= E[a211x
2
1 + a212x

2
2 + a213x

2
3 + 2a11a12x1x2 + 2a11a13x1x3 + 2a12a13x2x3]

= a211E[x21] + a212E[x22] + a213E[x23] + 2a11a12E[x1x2] + 2a11a13E[x1x3] + 2a12a13E[x2x3]

= a211 + a212 + a213 (43)

Using the mathematics for the expected value of the square of y1 it can be shown that the expected values of the
squares of y2 and y3 as defined by Equations (11) and (12), respectively, are...

E[y22 ] = a221 + a222 + a223 (44)

E[y23 ] = a231 + a232 + a233 (45)

C) Using Equations (6) and (7) above the expected value of the product of y1 and y2 as defined by Equations (10)
and (11), respectively, is...

E[y1y2] = E[(a11x1 + a12x2 + a13x3)(a21x1 + a22x2 + a23x3)]

= E[a11a21x
2
1 + a11a22x1x2 + a11a23x1x3 + a12a21x2x1 + a12a22x

2
2+

a12a23x2x3 + a13a22x2x3 + a13a23x
2
3]

= a11a21E[x21] + a11a22E[x1x2] + a11a23E[x1x3] + a12a21E[x2x1] + a12a22E[x22]+

a12a23E[x2x3] + a13a22E[x2x3] + a13a23E[x23]

= a11a21 + a12a22 + a13a23 (46)

Using the mathematics for the expected value of the product of y1 and y2 it can be shown that the expected value
of the product of y1 and y3 (as defined by Equations (10) and (12), respectively) and the expected value of the
product of y2 and y3 (as defined by Equations (11) and (12), respectively) are...

E[y1y3] = a11a31 + a12a32 + a13a33 (47)

E[y2y3] = a21a31 + a22a32 + a23a33 (48)
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D) Using Appendix Equations (40) and (43) the variance of y1 is...

E[y21 ]− (E[y1])2 = a211 + a212 + a213 (49)

E) Using Appendix Equations (41) and (44) the variance of y2 is...

E[y22 ]− (E[y2])2 = a221 + a222 + a223 (50)

F) Using Appendix Equations (42) and (45) the variance of y3 is...

E[y23 ]− (E[y3])2 = a231 + a232 + a233 (51)

G) Using Appendix Equations (46), (40) and (41) the covariance of y1 and y2 is...

E[y1y2]− E[y1]E[y2] = a11a21 + a12a22 + a13a23 (52)

H) Using Appendix Equations (47), (40) and (42) the covariance of y1 and y3 is...

E[y1y3]− E[y1]E[y3] = a11a31 + a12a32 + a13a33 (53)

I) Using Appendix Equations (48), (41) and (42) the covariance of y2 and y3 is...

E[y2y3]− E[y2]E[y3] = a21a31 + a22a32 + a23a33 (54)
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